Three-Phase Inverter



  1. Used to supply three-phase loads
  2. Three single-phase inverters could be used, however, 12 switches are necessary, as a result, less efficient
  3. Consists of three legs, one for each phase
  4. One of the two switches in a leg is always ON at any instant
  5. Output of each leg depends on Vs and the switching status



 
power electronic converter: Three-Phase Inverter
Three-Phase PWM Inverter


power electronic converter: DC-AC CONVERTERS{v_{ab}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t + \frac{\pi }{6})}

{v_{bc}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t - \frac{\pi }{2})}

{v_{ca}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t - \frac{{7\pi }}{6})}

\begin{array}{l}
{V_{Ln(rms)}} = \frac{{4{V_S}}}{{\sqrt 2 n\pi }}\sin (\frac{{n\pi }}{3})\\
{V_{L1(rms)}} = \frac{{4{V_S}}}{{\sqrt 2 \pi }}\sin (\frac{\pi }{3}) = 0.7797{V_S}
\end{array}



power electronic converter: DC-AC CONVERTERS
Delta and Y-Connected
power electronic converter: DC-AC CONVERTERS
Equivalent Circuits
power electronic converter: DC-AC CONVERTERS power electronic converter: DC-AC CONVERTERS Equivalent Circuits for Y-Load

{v_{ab}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{\sqrt 3 n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t)}

{v_{bc}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{\sqrt 3 n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t - \frac{{2\pi }}{3})}

{v_{ca}}(t) = \sum\limits_{n = 1,3,5,..}^\infty  {\frac{{4{V_S}}}{{\sqrt 3 n\pi }}\sin (\frac{{n\pi }}{3})\sin n(\omega t - \frac{{4\pi }}{3})}

previous Sinusoidal PWM
next Sinusoidal PWM 3-Phase Inverter

No comments:

Post a Comment

Please wait for approval of your comment .......