Presentation on Analysis & Detection of Fault Location in Transmission Line of a Power System Network
OBJECTIVEOur main objective is-
- Analysis & detection of fault location in transmission line of a power system network with steel ground and ACSR ground wire.
- Finally, we varies relative fault distance of simulated fault and detect relative distance to the faulted tower.
Program Flowchart
MATLAB PROGRAM FOR FAULT LOCATION
CASE-1: Short Line with Steel Ground Wire (Line Length=5km)
L=5; % line length in km
R=10; %tower footing resistance in ohm
ds=0.25; %relative distance in km
Zd=[(0.1199+j0.4086)*L]; %positive-sequence impedance for total line length
Z0=[(0.3242+j1.2614)*L]; %zero- sequence impedance for total line length
I0=5; %input current in amp.
Ia=25; %ground fault current flowing left from fault place
r=(0.963-j0.065); %reduction factor
γ=(1.4204+j0.0120); %phase angle of coefficient
Zf =((1.4105+j0.2711)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((1.4804+j0.2514)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.1283); %phase angle of coefficient
Zf =((1.4105+j0.2711)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=20; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((1.8568+j0.4044)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0282); %phase angle of coefficient
Zf =((2.0589+j0.3848)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.01283); %phase angle of coefficient
Zf =((1.8568+j1.4044)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=40; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((2.2996+j0.5716)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7365-j0.0290); %phase angle of coefficient
Zf =((2.7182+j0.5942)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.1283); %phase angle of coefficient
Zf =((2.2996+j0.5716)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=80; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((2.6732+j0.7489)/ds); %ground fault impedance
Z(R)=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((3.3241+j0.8574)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.1283); %phase angle of coefficient
Zf =((2.6732+j0.7489)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)* tgфf)])
CASE-2: Long Line with Steel Ground Wire(Line Length=50km)
L=50; % line length in km
R=10; %tower footing resistance in ohm
ds=0.025; %relative distance in km
Zd=[(0.1199+j0.4086)*L]; %positive-sequence impedance for total line length
Z0=[(0.3242+j1.2614)*L]; %zero- sequence impedance for total line length
I0=5; %input current in amp.
Ia=25; %ground fault current flowing left from fault place
r=(0.963-j0.065); %reduction factor
γ=(1.0545-j0.0070); %phase angle of coefficient
Zf =((1.6354+j0.3671)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/[imag(Z)
(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.9492-j0.0116); %phase angle of coefficient
Zf =((1.7348+j0.3387)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(13.2861-j2.2623); %phase angle of coefficient
Zf =((1.6354+j0.3671)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=20; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0485-j0.0084); %phase angle of coefficient
Zf =((2.0385+j0.4888)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((2.3519+j0.4415)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9949); %phase angle of coefficient
Zf =((2.0385+j0.4888)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=40; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0494-j0.0070); %phase angle of coefficient
Zf =((2.4516+j0.6337)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((3.2278+j0.5886)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9948); %phase angle of coefficient
Zf =((2.4516+j0.6337)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=80; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((0.3627+j0.6434)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((0.4941+j0.8405)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2490-j0.1292); %phase angle of coefficient
Zf =((0.3627+j0.6434)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)*tgфf)])
CASE-3: Short Line with ACSR Ground Wire (Line Length=5km)
L=5; % line length in km
R=10; %tower footing resistance in ohm
ds=0.25; %relative distance in km
Zd=[(0.1199+j0.4086)*L]; %positive-sequence impedance for total line length
Z0=[(0.3242+j1.2614)*L]; %zero- sequence impedance for total line length
I0=5; %input current in amp.
Ia=25; %ground fault current flowing left from fault place
r=(0.963-j0.065); %reduction factor
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((0.3929+j0.4270)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7382-J0.0311); %phase angle of coefficient
Zf =((0.5237+j0.4689)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.1283); %phase angle of coefficient
Zf =((0.3929+j0.4270)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=20; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((0.3970+j0.5339)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((0.5469+j0.6480)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2328-j0.1281); %phase angle of coefficient
Zf =((0.3970+j0.5339)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=40; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((0.3802+j0.6047)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((0.5231+j0.7720)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2341-j0.1283); %phase angle of coefficient
Zf =((0.3802+j0.6047)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=80; %tower footing resistance in ohm
ds=0.25; %relative distance in km
γ=(1.4195+j0.0120); %phase angle of coefficient
Zf =((0.3627+j0.6434)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.50; %relative distance in km
γ=(1.7378-j0.0297); %phase angle of coefficient
Zf =((0.4941+j0.8405)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.75; %relative distance in km
γ=(2.2490-j0.1292); %phase angle of coefficient
Zf =((0.3627+j0.6434)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)* tgфf)])
CASE-4: Long Line with ACSR Ground Wire (Line Length=5km)
L=50; % line length in km
R=10; %tower footing resistance in ohm
ds=0.025; %relative distance in km
Zd=[(0.1199+j0.4086)*L]; %positive-sequence impedance for total line length
Z0=[(0.3242+j1.2614)*L]; %zero- sequence impedance for total line length
I0=5; %input current in amp.
Ia=25; %ground fault current flowing left from fault place
r=(0.963-j0.065); %reduction factor
γ=(1.0482+j0.0200); %phase angle of coefficient
Zf =((0.3944+j0.4499)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/ [imag(Z)
(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((0.6276+j0.4232)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5482-j1.9949); %phase angle of coefficient
Zf =((0.3944+j0.4499)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=20; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0494+j0.0070); %phase angle of coefficient
Zf =((4232+j0.5429)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9320-j0.0110); %phase angle of coefficient
Zf =((0.8783+j0.5784)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9949); %phase angle of coefficient
Zf =((0.4232+j0.5429)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=40; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0494+j0.0070); %phase angle of coefficient
Zf =((0.4407+j0.6258)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9320-j0.0110); %phase angle of coefficient
Zf =((1.2328+j0.7982)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9949); %phase angle of coefficient
Zf =((0.4407+j0.6258)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=80; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0288+j0.0040); %phase angle of coefficient
Zf =((0.4499+j0.6951)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((1.7343+j1.1085)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5474-j1.9942); %phase angle of coefficient
Zf =((0.4499+j0.6951)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)*tgфf)])
CASE-4: Long Line with ACSR Ground Wire (Line Length=5km)
L=50; % line length in km
R=10; %tower footing resistance in ohm
ds=0.025; %relative distance in km
Zd=[(0.1199+j0.4086)*L]; %positive-sequence impedance for total line length
Z0=[(0.3242+j1.2614)*L]; %zero- sequence impedance for total line length
I0=5; %input current in amp.
Ia=25; %ground fault current flowing left from fault place
r=(0.963-j0.065); %reduction factor
γ=(1.0482+j0.0200); %phase angle of coefficient
Zf =((0.3944+j0.4499)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/[imag(Z)
(real(Z)*tgфf)])
ds=0.500; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((0.6276+j0.4232)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5482-j1.9949); %phase angle of coefficient
Zf =((0.3944+j0.4499)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=20; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0494+j0.0070); %phase angle of coefficient
Zf =((4232+j0.5429)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9320-j0.0110); %phase angle of coefficient
Zf =((0.8783+j0.5784)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)*tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9949); %phase angle of coefficient
Zf =((0.4232+j0.5429)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=40; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0494+j0.0070); %phase angle of coefficient
Zf =((0.4407+j0.6258)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9320-j0.0110); %phase angle of coefficient
Zf =((1.2328+j0.7982)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5483-j1.9949); %phase angle of coefficient
Zf =((0.4407+j0.6258)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
R=80; %tower footing resistance in ohm
ds=0.025; %relative distance in km
γ=(1.0288+j0.0040); %phase angle of coefficient
Zf =((0.4499+j0.6951)/ds); %ground fault impedance
Z=[Zd+(Z0-Zd)*(I0/Ia)-(1/R)]; %line impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.500; %relative distance in km
γ=(1.9319-j0.0110); %phase angle of coefficient
Zf =((1.7343+j1.1085)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)]/
[imag(Z)-(real(Z)* tgфf)])
ds=0.975; %relative distance in km
γ=(12.5474-j1.9942); %phase angle of coefficient
Zf =((0.4499+j0.6951)/ds); %ground fault impedance
tgфf=imag (r* γ*Zf)/real (r* γ*Zf);
syms Za df
[Za , df]= solve (Za-[df*Z+r* γ*Zf], real(Za)-[df*real(Z)+real(r* γ*Zf)])
Syms di dr
[di , dr]= solve (di-[df+(imag(r* γ*Zf)/imag(Z))], df-[(imag(Z)*di)-(real(Z)*dr* tgфf)] / [imag(Z)
(real(Z)* tgфf)])
The Result of Calculations are Presented in Table – 1
For Short Line with Steel Ground Wire
Table – 1
R(Ω) | ds | Zf(Ω) | γ | di | df |
10 | 0.25 | 1.4105+j0.2711 | 1.4204+j0.0120 | 0.3242 | 0.2678 |
10 | 0.50 | 1.4804+j0.2514 | 1.7378-j0.0297 | 0.5608 | 0.5000 |
10 | 0.75 | 1.4104+j0.2711 | 2.2341-j0.1283 | 0.7643 | 0.6730 |
20 | 0.25 | 1.8568+j0.4044 | 1.4195+j0.0120 | 0.3679 | 0.2814 |
20 | 0.50 | 2.0589+j0.3848 | 1.7378-j0.0282 | 0.6119 | 0.4926 |
20 | 0.75 | 1.8568+j1.4044 | 2.2341-j0.1283 | 0.8561 | 0.7159 |
40 | 0.25 | 2.2996+j0.5716 | 1.4195+j0.1020 | 0.4221 | 0.2864 |
40 | 0.50 | 2.7182+j0.5942 | 1.7365-j0.0290 | 0.6749 | 0.4725 |
40 | 0.75 | 2.2996+j0.5716 | 2.2341-j0.1283 | 0.9252 | 0.7050 |
80 | 0.25 | 2.6732+j0.7489 | 1.4195+j0.0120 | 0.4834 | 0.2884 |
80 | 0.50 | 3.3241+j0.8574 | 1.7378-j0.0297 | 0.7834 | 0.4753 |
80 | 0.75 | 2.6732+j0.7489 | 2.2341-j0.1283 | 1.0059 | 0.6820 |
For Long Line with Steel Ground Wire
Table – 2
R(Ω) | ds | Zf(Ω) | γ | di | df |
10 | 0.025 | 1.6354+j0.3671 | 1.0545-j0.0070 | 0.0322 | 0.0252 |
10 | 0.500 | 1.7348+j0.3387 | 1.9492-j0.0116 | 0.5145 | 0.4994 |
10 | 0.975 | 1.6354+j0.3671 | 13.2861-j2.2623 | 0.9653 | 0.8830 |
20 | 0.025 | 2.0385+j0.4888 | 1.0485-j0.0084 | 0.0348 | 0.0276 |
20 | 0.500 | 2.3519+j0.4415 | 1.9119-j0.0110 | 0.5146 | 0.4992 |
20 | 0.975 | 2.0385+j0.4888 | 12.5483-j1.9949 | 1.0347 | 0.8912 |
40 | 0.025 | 2.4516+j0.6337 | 1.0494-j0.0070 | 0.0382 | 0.0301 |
40 | 0.500 | 3.2278+j0.5886 | 1.9319-j0.0110 | 0.5189 | 0.4990 |
40 | 0.975 | 2.4516+j0.6337 | 12.5483-j1.9948 | 0.9999 | 0.8958 |
80 | 0.025 | 2.8413+j0.7868 | 1.0494-j0.0070 | 0.4180 | 0.0327 |
80 | 0.500 | 4.4688+j0.7978 | 1.9319-j0.0110 | 0.5253 | 0.4986 |
80 | 0.975 | 2.8413+j0.7868 | 12.5483-j1.9948 | 1.0219 | 0.9055 |
For short line with ACSR ground wire
Table – 3
R(Ω) | ds | Zf(Ω) | γ | di | df |
10 | 0.25 | 0.3929+j0.4270 | 1.4195+j0.0120 | 0.3534 | 0.2749 |
10 | 0.50 | 0.5237+j0.4689 | 1.7382-j0.0311 | 0.6300 | 0.4937 |
10 | 0.75 | 0.3929+j0.4270 | 2.2341-j0.1283 | 0.9000 | 0.7647 |
20 | 0.25 | 0.3970+j0.5339 | 1.4195+j0.0120 | 0.3826 | 0.2730 |
20 | 0.50 | 0.3802+j0.6047 | 1.7378-j0.0297 | 0.6889 | 0.4913 |
20 | 0.75 | 0.5231+j0.7720 | 2.2328-j0.1281 | 0.9459 | 0.7582 |
40 | 0.25 | 0.3802+j0.6047 | 1.4195+j0.1020 | 0.4026 | 0.2681 |
40 | 0.50 | 0.3627+j0.6434 | 1.7378-j0.0297 | 0.7316 | 0.4884 |
40 | 0.75 | 0.4941+j0.8405 | 2.2324-j0.1283 | 0.9770 | 0.7345 |
80 | 0.25 | 0.3627+j0.6434 | 1.4195+j0.0120 | 0.4139 | 0.2634 |
80 | 0.50 | 0.4941+j0.8405 | 1.7378-j0.0297 | 0.7560 | 0.4865 |
80 | 0.75 | 0.3627+j0.6434 | 2.2490-j0.1292 | 0.9967 | 0.7186 |
For Long line with ASCR ground wire
Table – 4
R(Ω) | ds | Zf(Ω) | γ | di | df |
10 | 0.25 | 0.3944+j0.4499 | 1.0482+j0.0200 | 0.0332 | 0.0293 |
10 | 0.50 | 0.6276+j0.4232 | 1.9319-j0.0110 | 0.5124 | 0.4998 |
10 | 0.75 | 0.3944+j0.4499 | 12.5482-j1.9949 | 1.0535 | 0.9941 |
20 | 0.25 | 0.4232+j0.5429 | 1.0494+j0.0070 | 0.0349 | 0.0309 |
20 | 0.50 | 0.8783+j0.5784 | 1.9320-j0.0110 | 0.5169 | 0.4997 |
20 | 0.75 | 0.4232+j0.5429 | 12.5482-j1.9949 | 1.0735 | 1.0115 |
40 | 0.25 | 0.4407+j0.6258 | 1.0494+j0.0070 | 0.0365 | 0.0325 |
40 | 0.50 | 1.2328+j0.7982 | 1.9320-j0.0110 | 0.5232 | 0.4996 |
40 | 0.75 | 0.4407+j0.6258 | 12.5483-j1.9949 | 0.0919 | 1.0286 |
80 | 0.25 | 0.4499+j0.6951 | 1.0288+j0.0040 | 0.0376 | 0.0337 |
80 | 0.50 | 1.7343+j1.1085 | 1.9319-j0.0110 | 0.5322 | 0.4995 |
80 | 0.75 | 0.4499+j0.6951 | 12.5474-j1.9949 | 1.1076 | 1.0439 |
In future the system can be developed for three phase –to- ground fault detection which achieved by taking into account the imaginary part of the ground fault impedance at the fault place.
Conclusion
We are successfully completed in our thesis on ‘Analysis & detection of Fault location in transmission line of a power system network’. Our simulated results are presented in tables which see that fault distance length (df) increases with increases in relative distance of the simulated fault (ds) .When the faulted tower is most often one of the two nearest then simulated result is high accuracy obtained for the faults at the sections satisfying the condition |Ia|>|Ib|. We try as possible as more accurate result of the detection of fault location. As a result, more smoothly operate in transmission line of a power system network. In our thesis paper presents highly accurate fault location algorithm for the single phase –to- ground faults on a transmission line, connecting the transmission and the distribution networks. With a somewhat lower accuracy, the algorithm can be used for the lines connecting a strong and a weak network. The algorithm is based on MATLAB program. The main advantages of the algorithm in comparison to the previous presentation algorithm methods are achieved by taking in to account the imaginary part of the ground fault impedance at the fault place. Our supervisor sir helps us for successfully completed our thesis.
Submitted By Mohammad Ohiduzzaman and Pranabesh Dutta
0 comments:
Post a Comment
Please wait for approval of your comment .......